If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+32x-80=0
a = 6; b = 32; c = -80;
Δ = b2-4ac
Δ = 322-4·6·(-80)
Δ = 2944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2944}=\sqrt{64*46}=\sqrt{64}*\sqrt{46}=8\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{46}}{2*6}=\frac{-32-8\sqrt{46}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{46}}{2*6}=\frac{-32+8\sqrt{46}}{12} $
| 3x^2+4x+35=0 | | 168=6x-72 | | (a-10)X(a+10)=200a | | 2.5(5+7x)=3 | | 4z^2+z+2=0 | | 5x^2-6-10x^2+8+4x=0 | | 90y+2=180 | | 5(22-9y)+6y=7 | | 3m+8=(4+m)-4 | | (9+k)/3=3 | | 17=-(m-7) | | 2x+49=180 | | 3x-5(5/2x+7)=27 | | 24/4=x/10 | | 3/4+a=48 | | 4t-32/2=3t | | 28-32n=92 | | -16-n=-8 | | 9x=2x+27 | | 106x+179=180 | | 9/11v-33=-3/11v-6 | | -4w-4=0 | | 3−5(2x−5)=−2 | | 106x+1=180 | | 7^3-2x=449 | | 2-x=-8-1x | | (n-6)^2=2 | | 11x=x+27 | | 8(y-7)=-2(y+3 | | 9/11v-33=3/11v-6 | | X+20=9x+4 | | 8-2x+13=x-2 |